25.How hunting dogs find their way ‘home’ in a forest

Here’s a link to a fascinating recent piece of research that explores the homing abilities of hunting dogs with a very well-developed sense of smell - so-called ‘scent hounds’.

Katerina Benediktova and her colleagues put ‘action cams’ and GPS-tracking collars on 27 hunting dogs and let them roam freely around a forest. (NB: the dogs were not passively moved to a new location like the animals in the earlier experiments we’ve considered.) They then analysed how the dogs found their way back to their owners - across no fewer than 622 trials at 62 locations.

(Even if you don’t want to get into all the details, it’s worth watching this video clip - it’s really fun!)

The team predicted that the dogs would either follow their own scent trail back to their owner (‘tracking’) or they would take shortcuts - a strategy they called ‘scouting’.

And that’s exactly what they found.

In 399 cases (almost 60%) the dogs used a simple tracking strategy to retrace their outward route. But in 223 cases (33%) they homed by a novel route. Somehow they ‘scouted’ out a completely new path that would take them back to their owners more quickly and directly.

How did they do that?

The research team have pretty well ruled out the possibility that the dogs made use either of the sun or polarisation patterns in the sky to help them set a course. They also believe that the wind direction would in most cases have made it very difficult for the dogs to ‘scout’ their way back to their owners using only their acute sense of smell.

But they did discover something quite new.

The ‘scouting’ dogs typically performed a short north/south run just before setting off for home - a so-called ‘compass run’.

Benediktova and her team think that these ‘compass runs’ reflect the dogs’ ability to detect the Earth’s magnetic field. They suggest that the runs may help the dogs’ recalibrate their DR (or ‘path integration’ system). In other words, they may help the dogs eliminate errors that have accumulated in their estimates of their position relative to their starting points. So perhaps their homing system is based on DR.

While this might explain how the hunting dogs in this experiment homed successfully, it’s hard to see how the dogs in the earlier experiments could have used DR to find their way home after being passively displaced. How would a dog in a closed basket accurately keep track of its position after a circuitous journey to a location 89 km away?

While it now looks more likely than ever that a magnetic compass plays an important part in the amazing homing abilities of dogs, I wonder whether they also make use of some kind of ‘cognitive map’ that works in conjunction with their DR, olfactory and compass skills.

More research is needed to tease out these issues.

No doubt there’ll soon be more to say on this subject. I’ll try to keep you posted!